
DDT Training Day

Reading Materials and Exercises

October 2012

© Allinea Software 2012 1 DDT Training 3.2

DDT Training Course

Objectives

This training course contains the materials you will need to get started with Allinea DDT.

If you are in a taught DDT tutorial, the tutor will begin by showing you many of the DDT features
as a quick overview – the exercises cover a lot of DDT, but it's nice to see a little tour up front of
what to expect as the day progresses.

There are a series of walked through examples – each followed by a hands on exercise for you to
try.

All of these materials will be left behind for you to use after the day is complete, so you can return
to them any time. Please feel free to mail your tutor, or support@allinea.com afterwards if there is
anything that you still want to know!

© Allinea Software 2012 2 DDT Training 3.2

mailto:support@allinea.com

Session 0 – Getting Started

DDT will have been configured to work with your system already. Your tutor today will tell you
what to do to get DDT started, if you do not already know.

The examples in this course all have a makefile, which should work on most systems.

If your command for MPI source compilation is “mpicc” or “mpif90” then to make an example, use
“make” alone.

make

NOTE: if your MPI compilation command is different you will need to set the CC or F90 variables
– the following will work on a Cray XT or XE system for example.

make CC=cc
make F90=ftn

Some platforms may require additional flags to enable memory debugging during compilation –
notably IBM AIX and Blue Gene plus the Cray XT and XK systems all use static linking. There is
information in the userguide about how to link in memory debugging support on those systems –
other systems do not require you to do anything.

© Allinea Software 2012 3 DDT Training 3.2

Session 1: Straightforward Crashes

First let's look at debugging crashes – the kinds of crashes or errors that happen repeatedly. These
are often segmentation faults or aborts, or even exiting with an error code.

This form of bug is very common – and very easy to fix with a debugger, but much harder without
one!

We'll all walk through one case using the cstartmpi example together. This is a messy, confusing C
program, with some bugs.

Afterwards, there's another crash for you to solve on your own or with your neighbour.

Walkthrough

First we will compile the application cstartmpi. There is a makefile for this in the cstartmpi
directory.

cd cstartmpi
make

Run with 4 processes - it's ok

mpirun -np 4 ./cstartmpi.exe

Now try again with some arguments

mpirun -np 4 ./cstartmpi.exe some input arguments

The program will abort as there has been a problem:

rank 0 in job 52 tenku_60773 caused collective abort of all
ranks

The next step is to bring this up in DDT and find out what happened. The quickest way to start is to
run DDT almost identically to the way you launched MPI.

ddt -start -np 4 ./cstartmpi.exe some input arguments

The DDT GUI will appear - and it will have started your program. You can see the source code,
and there is a colour highlighted line. This is the current location that processes are at. Initially all
processes are paused after MPI_Init.

At the top of DDT you will see a number of control buttons, a bit like a VCR (or PVR for the
modern reader). If you hover the mouse over the control buttons, a tooltip will appear that gives the
name of the button.

• Play – make the processes in the current group run until they are stopped.

• Pause – cause the processes in the current group to pause, allowing you to examine them.

• Add Breakpoint – adds a breakpoint at a line of code, or a function, that will cause processes
to pause as soon as they reach that location.

• Step Into – will either step the current process group by a single line, or if the line involves a
function call, it will step into the function instead.

© Allinea Software 2012 4 DDT Training 3.2

• Step Over – will step the current process group by a single line.

• Step Out – will run the current process group to the end of their current function, and return
to the calling location.

Press play to run the program.

Allinea DDT stops with an error message – indicating a segmentation
fault.

The screenshot shows DDT after the dialog has been dismissed – we've colour highlighted the most
important parts.

At the bottom of the GUI you can see the Stacks view (you may need to raise the tab by clicking on
it to see it). This is tightly connected to the source code, also highlights in the screenshot. and
shows where all the paused processes are: all the current function calls – higher points of the tree
call the lower branches.

Often just looking at the variables at different points in the stack is enough to tell you why the
program crashed.

In this case – you can see arg is the null pointer (0x0) which is invalid for its usage in the printf
statement in the code. Hence, the program crashed because print_arg was called with the wrong
thing.

© Allinea Software 2012 5 DDT Training 3.2

Illustration 1: DDT display after dismissing the dialog

Click on the “main” directly above the print_arg function in the Stack
View.

This takes you to main which lets you see where that arg value comes
from.
Now click on the “Locals” tab (on the right-hand side of the GUI) – you
are seeing all the local variables.

Click on the “Current Line” tab to simplify and show only the variables
on that line.
Click and drag between lines 113 and 118 in the source code to show all
the variables in that region.

You can now see y is clearly incorrect - there aren't that many arguments (argc).

To find why is it wrong, examine the line 117: x is being checked against argc but y is being
incremented.

Fix the for loop condition in your favourite editor to read “y < argc” then
recompile and re-run - now it works!

Exercise

Our cstartmpi program has another bug: it runs fine for 4 processes, as we've just seen, but at larger
numbers it segfaults again.

mpirun -np 5 ./cstartmpi.exe

rank 4 in job 60 tenku_60773 caused collective abort of
all ranks

Now it's up to you to find out why – you can join with your neighbour at one computer to run the
program with DDT and work out what's going wrong and whether you can fix it!

Hints

• To start debugging with DDT

ddt -start -np 5 ./cstartmpi

• Click 'Play' to run a program
• Use the stack view to see which sequence functions called each other in
• Click and drag to show variables from many lines in the current line view
• Why didn't the loop terminate? Why did it terminate for the other processes?

If you are tempted to use some “print” statements, it might be interesting for you to try the
tracepoints. They can be useful for example:

Go the the “Tracepoint” tab and right-click to “Add a tracepoint”.
Add the tracepoint on line 108 on variables x and y for all the processes
and for a few steps (see picture below).

After the form is correctly filled in, click on add.

© Allinea Software 2012 6 DDT Training 3.2

Then,create a breakpoint right after your tracepoint and run your
program.

The output will be generated in the “Tracepoint output” tab.

Illustration 2: Add a tracepoint in Allinea DDT

NOTE: Allinea DDT can also evaluate expressions. For instance, you can try to trace the following
: “y<12”. You will then retrieve binary values (0 and 1).

Walkthrough

We have previously seen how to get started with Allinea DDT in the interactive mode. As you
know, Alinea DDT also integrates offline capabilities.

Using the help provided in the command line, find out how to get started in offline mode.

It is very easy to run Allinea DDT in a non-interactive mode and to create an HTML report. To do
so, just start your job using the following command and create an HTML report :

ddt -offline report.html -n 4 ./cstartmpi.exe arg1 arg2

Allinea DDT will re-use the latest automatically saved session for that particular example. If you
have created some tracepoints and breakpoints, they will appear in the report.

Now, open the report that has been generated :

firefox report.html

© Allinea Software 2012 7 DDT Training 3.2

The report is divided into 3 parts that you can browse :

• messages : these are the different events that occurred (breakpoints, errors...)
• tracepoints : the values that have been traced during the run
• input/output : the standard printed values to stderr and stdout.

If you wish to use a specific session file, you can do the following.

Open your program with Allinea DDT in interactive mode as we have
seen previously.
Create breakpoints, tracepoints in your interactive session.

Click on “Session” and “Save session”. Name it “cstartmpi.ddt”
Close Allinea DDT.

Now, start Allinea DDT in offline mode and use this session file.

ddt -offline report2.html -ddtsession cstartmpi.ddt -n 4
./cstartmpi.exe arg1 arg2

The report that is now generated will include the information that you provided in your
session file.

Exercise

We have seen how to use offline debugging using automatically and manually saved sessions. Now,
we want to provide some specific instructions to Allinea DDT in command line only.

In this exercise, you have to create a report containing a breakpoint and a tracepoint that have been
defined in CLI only.

Hints

• Get some help about the CLI syntax from Allinea DDT

ddt -help

• Check the key words : “-break-at” and “-trace-at”.

© Allinea Software 2012 8 DDT Training 3.2

Session 2: Memory Errors

Memory errors often result in a segmentation fault but can be complex to track down – as a problem
will not always be triggered – it depends often on the data set for example. Sometimes they simply
cause subtly incorrect results – the worst outcome in a scientific application. Overwriting memory
can also cause errors to be reported later in execution, or another problem is freeing memory twice.

DDT comes with built-in memory debugging, which we'll use in a moment.

We'll start with a step-by-step walkthrough.

Then move on to an exercise again.

Session 2: Walkthrough

In this example we will use the trisol code in the trisol directory.

cd trisol
make

Run it:

mpirun -np 4 ./trisol.exe

The application will – most probably – crash, although being a memory error you might be running
on a system that does not trigger the problem.

Let's try it in DDT (with memory debugging disabled).

ddt -start -np 4 trisol.exe

DDT will start the code as expected.

Click on 'Play'

Depending on your luck, DDT may or may not be able to run the code through to completion
successfully. You may see no error – in which case the code runs to the end, or you may find an
error triggered.

This is often the case when a memory error is at work; but fear not, we just need to turn up the dial
on DDT's memory debugging.

Let's start again.

Click on the “Session” menu, and select “New Session/Run”.

Before we start the new session, we need to configure the memory debugging settings for this run.

Tick to enable memory debugging, and then click on “Details”.

There are now some further options to choose from to get the right amount of debugging help. The
higher levels use more memory and are slower than the lower levels.

© Allinea Software 2012 9 DDT Training 3.2

Ensure that the options to “Preload” the memory debugging library, and
for Fortran/C are selected.

Choose “Thorough” for the level of checking. Leave “Guard Pages”
unchecked.
Click “Ok” to confirm your settings.

We're now ready to debug again.

Click “Run” to start your code.
Click “Play” to run through to the end, or first error.

You should now see a memory error appears.

DDT explains that at some point, some reserved memory that DDT added beyond your array has
been changed unexpectedly,

So, we have an array overflow error, then. But where?

To find out, we need to turn on an advanced feature: Guard Pages. As before let's get the settings
ready and restart.

From the Session menu, click New session/Run.

Change the Memory Debugging Settings and enable the Heap
Overflow/Underflow detection option. A setting of “1” and “After” is
appropriate for this example.
Now run the application as before and click “Play” once it has started.

The Heap overflow/underflow detection adds an extra buffer beyond allocated memory (or before,
but not both at the same time!) and then DDT can detect any writes or reads in this zone.

DDT should now detect a memory error – that a process tried to read/write after the end of the
array!

Click “Pause”

Now we see the line the problem occurred on.

Click on res in current line.

The type of “res” is shown as size 4095, but we're trying to set element 4096. This didn't cause

© Allinea Software 2012 10 DDT Training 3.2

Illustration 3: DDT detects something has overwritten a value

problems until the MPI_Reduce, but we trapped it at the cause with Allinea DDT.

Session 2: Exercise

Fix the bug in trisol around line 27 of check.f90 as follows:

DO k = 1, block_size
 res(k) = k
END DO

Run the program – it may seems to work and print out “Solution correct”, but there is actually still a
particularly subtle memory bug still present.

Now run again in DDT, with the same memory settings as before: what happens? DDT reports
there is a read after the end of the array in matnrm.f line 30.

Hint

Examine variables k and then j2, can you solve the problem?

© Allinea Software 2012 11 DDT Training 3.2

Session 3: Deadlock in MPI

Early versions of MPI programs often get into deadlock – things such as each process waiting for
another, communicators are not matched up or tags not matched. In some cases, livelock happens
too – where processes are communicating but not proceeding in any useful way.

DDT can inspect the message queues to show which processes are waiting and why, in addition,
simply pausing processes is a good way of finding where processes are.

We'll start with a step-by-step walkthrough and then move on to an exercise again!

Walkthrough

First we will build the cpi example.

cd cpi
make

Run it with 4 processes

mpirun -np 4 ./cpi

It works fine

. . . .
pi is approximately 3.1416009869231249, Error is
0.0000083333333318
wall clock time = 1.268749

Now we run with 10 processes and it also works fine.

mpirun -np 10 ./cpi

The next test is to try 8 processes.

mpirun -np 8 ./cpi

It locks up!

Process 7 on localhost
Process 5 on localhost
Process 6 on localhost
Process 3 on localhost
Process 2 on localhost
Process 0 on localhost
Process 1 on localhost
Process 4 on localhost

 Press ctrl-c to abort, and let's try it under DDT.

ddt -start -np 8 ./cpi

When DDT returns with your code begin running the program

Press the play button.

 After a while, the program has still not terminated – but the debugger has still not helped yet.

© Allinea Software 2012 12 DDT Training 3.2

Press the pause button.

Examine the source code view and the stacks view. Both are showing that half of the processes are
at one location and half at another. Half are in an MPI_Barrier and the other half are in MPI_Bcast.

The next challenge is to find out why this has happened.

Let's look at the loop with the barrier. Did every process execute it the same number of times?

Open the View Menu, and select the Cross Process Comparison tool.
Ask DDT to evaluate “i <= n ” in this dialog.

Sure enough, the “barrier” processes are still trying to loop and the rest have already exited.

How many times should each process execute this loop?

Use the Cross Process Comparison to evaluate (n - (myid + 1))/numprocs

We see that processes 0-3 execute the loop one extra time. Possible solutions are to move the
Barrier out of the loop to a place where it's executed the same number of times by every process, or
to modify the loop to make sure all processes execute it the same number of times

Exercise

Let's look at a new program that also deadlocks. Compile and run the Loop example.

cd Loop
make
mpiexec -np 8 ./loop

It's supposed to pass a message around the loop, but it never finishes!

Kill it and debug it with DDT – try to find what the problem is.

Hints

• A small job is ample to find the cause

ddt -start -np 8 ./loop

• Try using the message queue window (a red arrow is a send that the other end isn't
receiving) - “View/Message Queues”

• Investigate the odd process out; what should it have done?

• Think of the example as passing a token around a loop 'max' times. Where does the token
start? Where does it stop? What should happen to it at the end?

• Look at the “received” variable in Cross Process Comparison tool, which is the number of
times the token has been received.

For an example of MPI ambiguity, replace the BUFSIZE definition with a smaller quantity (~100
instead of 1024x1024) – on most MPIs an MPI_Send of small volumes of data is completed
asynchronously! This means the code would terminate successfully, even though we know there is
a bug, for smaller message payloads.

© Allinea Software 2012 13 DDT Training 3.2

Session 4: Memory Leaks

Many languages allow you to allocate memory yourself – this area of memory is known as the
“heap”. Allocations on the stack (local variables) are automatically deallocated when they're no
longer relevant, but allocations on the heap (pointers, allocatable arrays) are not.

If this happens in an iteration loop for example, then your program keeps on consuming more and
more memory – this is a leak. Tracking down memory leaks on your own is awful, but with a
memory debugger, it is easy.

We'll walk through two ways to look for memory leaks with DDT – a general one that (almost)
always finds the problem, and a two-minute version that's usually good enough.

Then there's an exercise for you to work on!

Walkthrough

1. Compile and run the mandel example program

cd mandel
make
mpirun -np 4 ./mandel

The program runs fine – no major issue. However, under the hood there was a memory leak - we
don't see it here because we're running at modest scales but it uses twice as much memory as it
should. We'll use DDT to diagnose and fix this problem.

Open DDT without using -start:

ddt ./mandel

We want to change the memory debugging settings again before running the program. Click on run,
advanced, settings.

This program makes a lot of memory allocation/deallocation calls, so to make sure it runs quickly
we'll turn off the extra debug checking; we're only interested in leak detection anyway.

Using the advanced button on the run dialog, go to the memory debugging
settings.
Change Heap Debugging to Fast and turn off Heap Overflow Detection .

Once these changes are made, we're ready to start debugging again.

Return to the run dialog, set the number of processes to 4.
Click Run.

There are lots of ways to debug a memory leak, but I'm going to show a simply technique that
works well with most HPC codes. First, we find the main iteration loop (there's almost always one
in HPC). Normally you know where it is. In this case, it's at line 64.

Scroll to line 64, or use Search->Go to line and type in 64.

© Allinea Software 2012 14 DDT Training 3.2

What we want to do is run the loop a couple of times, check the memory usage, then run it a few
more and check again. If the memory usage is growing, that's a strong sign of a leak. Anything
that's being allocated every loop without being deallocated again is a potential problem.

We'll start by putting a breakpoint at line 64. Breakpoints cause processes to stop when they reach
a location. You can also add conditions to this if you want – so that you only stop if a certain
condition is true – but we don't need to do this today.

Right-click on the line and choose "Add breakpoint for All" .

Now click “Play”

A dialog tells you the program has stopped at the breakpoint.

We're going to let the loop run a few times in case it does something special the first time.

Click Continue a few times.

Now click Pause.

We will now look at the current memory usage.

Select “View” and then “Current Memory Usage”.

After a few seconds to gather all the information, DDT now shows some charts describing the
current memory usage. On the left, total memory used in each process is shown, and the view on
the right does that too and more.

Each process (0-3) has its own bar, the blocks represent lines on which memory was allocated. This
is important, because lots of tiny allocations (such as one every iteration) are grouped together so
that they stand out instantly.

© Allinea Software 2012 15 DDT Training 3.2

Illustration 4: Current Memory Usage – Process 0 shows a leak

Memory allocated in Packet::allocate() (reddish brown) is the most significant.

Click on a block to see the collection of pointers allocated from this point.

The allocation details pane on the left shows all the pointers DDT has seen allocated from that line
of code. In this case, several different pointers. One is huge, the rest are of moderate size. This is
just a baseline measurement, before we did much iteration.

Move the memory usage window to one side and go back to DDT.

Let's iterate a couple more times to see what changes.

Click play / continue another 5-6 times, then pause.

Click refresh in the usage window

The total allocated has increased slightly; this suggests a memory leak.

Click on a reddish brown bar to see which new allocations were made.

We can see that several new regions of size 160k were allocated; one for each iteration. To solve
the memory leak, we should find out what these are and why they are not being deallocated. DDT
can help.

Click on one of the size 160000 lines in the Allocation Details list.

Now we're examining one specific memory allocation made during execution. The Pointer Details
window shows the stack at the time it was allocated - which sequence of function calls resulted in
the allocation. In this case main called strategy1, which called Packet's receive function, which
called its allocate function.

Move the windows out of the way a bit and see what's going on.

Click on each of the stack lines in turn and see as DDT shows that place
in the code.

To analyse, start from the bottom. Packet calls allocate() to assign memory to its iterations variable.
Is this ever freed?

You can either scroll around the file and look, or - if you know some C++ - you might want to
check the destructor. We can simply look for free() calls and see if iterations is freed at all.

Click Search and then Find.
Search for 'free' by pressing enter.

No matches. The destructor is empty, too, which looks like a bug. Really the destructor should free
the memory, if it has been allocated.

Now in the general case you may need to do this - look at individual iterations, but often you can
short-cut the whole process by just running to the end of the program and looking at the memory
usage. Because DDT gathers lots of little related pointers together, it's usually still easy to see the
difference between a leak and normal usage.

Remove the breakpoint by right-clicking on its line and choosing Delete
breakpoint for All.

© Allinea Software 2012 16 DDT Training 3.2

Ensure DDT stops in exit() by ticking the Control/Default Breakpoints
options for abort and exit.

Press Play

DDT will stop the program just before it exits. When the window pops up, click 'Pause'. Now let's
see what's left over after everything that should have been collected is collected

Select View and then Current Memory Usage

As you can see, there is a lot of wasted memory. Often it's worth starting by looking at the state at
the end and only going into the iterations if it's not clear which parts are growing each iteration.

Exercise

Now it's time to return to our Loop program - this also has a memory leak!

cd Loop
ddt -np 4 -start ./loop

We now examine the memory usage – as we did in the previous example – can you see how to fix
this problem?

© Allinea Software 2012 17 DDT Training 3.2

Session 5: GPU Debugging

In this session we will take a look at debugging NVIDIA CUDA with DDT. Any system with
CUDA toolkit and driver levels above version 3.1 will work for debugging, although as the systems
are still evolving, the newer versions are generally more reliable or support more recent hardware.

The CUDA support is a natural addition to DDT, and fits well in the same way that multiple threads
or MPI do. There are additional features to give you more detail about CUDA kernels and we will
see these during this exercise.

Walkthrough

We will work with the prefix example. This computes the “prefix sum” of an array of integers. By
this, we mean that in the output array, the element at position i is the sum of the elements in the
input array, up to and including the position i.

Thankfully we don't need to know much about the algorithm here. It's a pretty awkward thing to do
with a GPU, but is important for sorting algorithms, for example

cd Prefix
make
./prefix

There is a bit of checking at the end of the code, to test the output, and it fails.

…
124750
error at element 64

We now start DDT as normal, DDT will auto-detect that the code is CUDA.

ddt ./prefix

Click run to start the application.

Press Step Over twice to see DDT working, as normal, through the
program.

Sometimes your program will call kernels from places you were not expecting, so it's good to know
that breakpoints still work. You set breakpoints by double clicking on a line of source code. There
is also a special breakpoint that will stop DDT any time that a kernel is about to start: this is the stop
on launch feature.

Select the Control/Default Breakpoints menu item and ensure that the
Stop on CUDA kernel launch feature is enabled.

We first start by looking at the CUDA initialization code.

Right click on the word cudasummer in line 193, and select “View
source”.

Now we will execute a little further, until after the device has been set up ready for the kernel.

Right click on line 143 and select “run to here”.

You can now see values in the Current Line window for devIn and devOut, the device memory
locations allocated in the previous lines. These are not ordinary pointers, they're device pointers, so

© Allinea Software 2012 18 DDT Training 3.2

we can't look at their targets until we're inside the device.

This program dumps some output about the device before it starts the kernel. Let's read it.

Click on the Input/Output tab

Everything looks normal so bring the Stacks tab back to the top.

Let's continue until we hit a kernel.

Press Play.

DDT returns control in the zarro function. Let's look and see what's changed in the interface.

The most important things to notice are the (at the top) CUDA thread selector – you can use this to
set a particular CUDA thread that you want to examine and control. At the bottom you can see the
Stacks view now has an extra column – giving the GPU thread count. You might also notice the
“K1” at the top by the thread selector – this means “Kernel 1”. We treat kernels like a regular CPU
thread in DDT.

We might want to see what happens when we step – let's advance a single line through the kernel.

Click Step Over.

You should see the colour highlighted line in the source code split to become two lines.

Hover the mouse on each line.

This tells you how many threads – and which ones – are at that particular line of code.

Down in the Stacks view – you can see that 480 threads are at one line, and 32 at another.

© Allinea Software 2012 19 DDT Training 3.2

Illustration 5: The two main changes when inside a kernel

You can change to a different thread by entering new values in the thread selector.

Enter <0,0> <2,0,0> in the thread selector boxes.

Click “Go”

Notice how x has changed.

You can also switch threads by clicking on a branch in the Stacks view. DDT will change to a
thread that is on that line.

Click on the line 90 branch

You will notice that threadIdx.x, for example, is changed.

Press Step Over again.

Now 64 GPU threads are on line 92. This is because CUDA forces 32 threads to step together – a
warp. This is the smallest unit of execution that the debugger can control.

Press Play again

DDT will now begin the main kernel (prefixsumblock). Let's check the input is right, because we
know the output is wrong somewhere!

Click on the “in” in the Current Line view.

At the bottom you should see the type of “in” - it is a “@global int* @parameter”. This means a
pointer to integers that are located in the device global (ie. GPU memory), given as a parameter to
the function. If you do the same for “x” – and will see it is in a register.

Right click on “in” in the locals tab.

Select “View Array”.
Enter “in[$i]” as the expression.

Set lower and upper bounds of 0 and 100 respectively.
Click “Evaluate”.

DDT is now examining the device memory.

Scroll through the input to the end.

The input looks sensible.

Repeat the above for the “out” variable.

Scroll down beyond the 64th row.

What do you notice? Garbage in, garbage out – this must be the problem!

Thankfully, with the stop on launch feature, we know that the only kernel that did anything to the
data is the zarro one. We'll go back to the zarro code.

Type zarro in the search box, which is above the project files list.

Notice that the assignment didn't properly zero the array! We should have had, inside the if
statement, the following code.

© Allinea Software 2012 20 DDT Training 3.2

data[x] = 0

Edit the code, and re-run. The example now works.

Exercise

There is still at least one more bug remaining. It's a memory bug – so it won't crash every time but
it might cause trouble later.

Return to the session starting dialog,

Under “CUDA”, tick “Detect invalid reads/writes” to enable CUDA
memory debugging.

Once DDT returns, we will remove the breakpoint on every kernel launch, we don't need this right
now.

Select the Control/Default Breakpoints menu.

Disable CUDA stop on launch.
Press “Play”

DDT will return a short while later with an error message.

The error message is an exception triggered by CUDA - it means we are reading or writing outside
of valid memory.

Click Pause

The exact thread and exact location of the problem is now identified. DDT has selected thread
(8,0,0) as the first one that had problems. Remember that threads in the other warps could be
executing at the same time, it has to pick one, which might not be the first in your mental model of
how the GPU progresses!

What can you see? Do you know what has happened?

Hints

It helps to know a little bit about what's going on in the code.

Firstly, we compute the prefix sum of blocks of 64 elements in the array, in parallel, independently.

Then, if there is more than one block, we need to “correct” the results – adding the prefix sums of
the end points of the preceding blocks. To put this another way, if the block size is 64, then the 3rd

block of “sums” must include the last sum of the 1st block, and the last sum of the 2nd block, so that
the sum of the first 128 elements is included in the sum for every element of the third block.

This is what is happening in gathersumends – it is collecting up the last-elements of each block – so
that we can make the correction (via a recursion prefix sum, later in the code).

• Use the stack view to go to the CPU code and see where kernel size for gathersumends is
defined.

• Consider how many blocks there are – ie. how many end elements are there to gather?

• Look at the size of the arrays sent to gathersumends (the devEnds pointer) by examining the

© Allinea Software 2012 21 DDT Training 3.2

definitions.

© Allinea Software 2012 22 DDT Training 3.2

Session 6: Incorrect Results – C Example

We're going to take a naive C matrix multiplication example and use it to look at some of DDT's
graphing features.

This also tours some of the most important parts of debugging - breakpoints, watches, evaluation
and array viewing - classic tools to really dig around in the code.

Walkthrough

We will work with the matrix example – it is a simple C code to do matrix multiplication. Note
that in this example at this point, the bug is not important, we are only walking through the
feature. Don't worry, there is an exercise with a real bug in a minute!

cd Matrix
make
ddt -start ./matrix

DDT will look slightly different from the previous runs, as it is now debugging a scalar (non-MPI
application).

Hunting down the source of invalid results is a much freer activity than tracking down a crash. You
often want to explore bits of code in more detail. DDT includes several features to make this easier.
One is 'run to here' - a short-cut to run the program until all processes reach a certain point.

Right-click on line 29 and choose run to here.

You'll notice we can explore arrays in the locals / current line, but there is a better way to look at
larger arrays.

Switch to the current line view, drag A in the source code into view.
Now expand A.

You can also keep an eye on an actual element within the array by using the Evaluate window.

Drag and drop B[0][2] from the Current Line tab to the Evaluate tab
(bottom right of the DDT screen by default).

You can edit values as well with DDT.

Right click on B[0][2] in the Evaluate tab and select Edit Value.

Give B[0][2] a new value.

The Evaluate tab lets you also enter arbitrary expressions – like B[0][2] + A[1][1] – in addition to
simple values.

Step into init_array(B, 2).

Step over a few times.

Observe how the value of B[0][2] is updated.

There are however better ways to look at a whole array.

Right-click on B in the source code (line 20).

© Allinea Software 2012 23 DDT Training 3.2

Select View Array.

Enter B[$i][$j] as the expression and give i and j some bounds (they are
inclusive bounds).

DDT also lets you visualize arrays.

Click on Visualize in 3D

The 3D view shows the array in current state of being assigned to.

Step out to finish the function init_array.
Click Evaluate in the “Multi-Dimensional Array Viewer” again and then
Visualize

The array B is now being shown as it stands after it has been initialized.

Use step over to show stepping to the next line without going into any
functions

Another great feature debuggers have is being able to stop as soon as a value of data changes. This
is a feature that the hardware adds to help debugging.

Raise the “Watches” tab at the bottom part of DDT.

Right click and select “Add watch”.
Enter the expression C[4][4]

Press play.

DDT will stop the program – immediately after the variable is update, which means the line after
the line that changed the value is highlighted because highlighting shows the next instruction that
will be executed.

Exercise

Exit DDT and run the program from the command line.

As you can see, the program runs – but it runs incorrectly. Now it's up to you to find out why!

There are many ways to find the bug. The simplest is to start DDT and add a watch for C[1][1].
This shows that it changes to 1 in the init function and gives a hint that this is a bad thing (0 is
expected).

Alternatively, just looking at the C array any time before or during calculation should suggest
what's happened.

© Allinea Software 2012 24 DDT Training 3.2

Session 7: Incorrect Results - F90 Example

The next example is for Fortran users – it has two bugs, both are left as an exercise for you.

The code we will use is the Array example.

cd Array
make

Exercise

The code is a simple convolution code. It is an MPI code, although it doesn't do any
communication – and one or two processes is enough to show the problem.

A matrix B has a 3x3 so-called convolution matrix M applied to each cell. By this we mean that the
new value in matrix C at cell (i,j) is the arithmetic sum of the products of each cell surrounding
B(i,j), and B(i,j) itself – with a multiplication mask given by M.

Thus the 3x3 convolution matrix with all values zero except M(2,2), the central element, which is 1,
is an identity matrix for convolution.

The developer of this code was kind enough to create and include a test case involving the identity
convolution matrix, which applies it to an 5x5 array B – but something strange happens, the output
is not the same as the input.

mpirun -np 8 ./array

The output snippets below should match values.

 A real convoluted example code
 Start of input b
 1.0000000 0.0000000 0.0000000 0.0000000
0.0000000
…

 Output of the convolution of b
 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000
…

However, they are different. Can you find out why, and fix the problem?

Hint

• Use watchpoints to help you determine when the new values are written. There are some
cells which you know are wrong, watch one of those.

• Once you have found where things happen, double click on the line at the start of the
relevant loop to set a breakpoint there (line 161 looks a good one for this).

• Restart the example and step through the offending loop to see what happens.

You will probably kick yourself when you see the answer, maybe a different font would help – try
using the Session/Options/Appearance menu and change the code viewer font settings.

© Allinea Software 2012 25 DDT Training 3.2

• Be really careful when you fix the problem so that you change the code in both loops –
when you assign the elements of C to B, remember which elements you did not compute!

Exercise

The code may now run successfully, but there is still a bug.

This bug might, or might not, appear for you today – it's a memory bug that is triggered at random.
The chance of it appearing is related to a number of things – a random number seed, and the
machine page size (usually 4k for x86_64 Linux), and the current layout of the heap, the last of
which is dependent on the compiler.

One run of this code might, on 1,000 cores, cause a segmentation fault on 10 random cores, which
is exactly when you need a real debugger.

On our Open MPI x86_64 system, with the gfortran compiler, one run of 8 processes produced a
single segmentation fault. On another run, none of the processes errored.

Disable memory debugging in DDT, and run through to the end on a few
cores inside DDT.
Try this two or three times to see if you always get the same processes
erroring.

A bug like this would be easier to fix if it happened every time? DDT's memory debugging gives
exactly the help we need here.

Can you fix the problem?

Hints

• Using the underflow/overflow detection in the memory debugging settings, find where the
program crashes.

• Edit the code to fix the problem, compile and re-run.

• You might notice that there are actually two similar bugs – re-run the code with the “below”
protection instead of “above” (or vice-versa, if you started with below initially) and see if
the problem shows again.

If you started with “above” guard pages, you might have been shown two different error messages
at first – this is because some of the processes crashed before they got to the end of the loop – when
they wrote below the array – which obviously happens during earlier iterations in the loop. Other
processes were “lucky” and only crashed when DDT forced the problem to show with guard pages,
at the last iterations of the loop. This just goes to show how random memory bugs can be!

© Allinea Software 2012 26 DDT Training 3.2

Session 7: Large-scale debugging

Debugging a 4 procs example or a 1024 procs example is just as easy with Allinea DDT. And it is
time now for you to check that yourself!

Let's take the very first example we have been working on. If you have made some modifications
and fixed the initial buggy code - this is great! Let's put those bugs back in place.

Walkthrough

Just as the first time, we need to compile the application cstartmpi (with its bugs).

cd cstartmpi
make

Let's now run the program with 1024 processes :

mpirun -np 1024 ./cstartmpi.exe some input arguments

Just as before, the program will abort as there has been a problem:

rank 0 in job 52 tenku_60773 caused collective abort of all
ranks

The next step is to start the program at-scale at 1024 processes. You can place bets with your
neighbour and guess how long Allinea DDT will need to start at this scale.

ddt -start -np 1024 ./cstartmpi.exe some input arguments

As you can see, it is very quick! And now, as easily as when you were working on a few processes
earlier today, you can see the source code, the location of the processes, their status, etc.

Illustration 6: Summarized view for the processes

Click on step and see how long Allinea DDT needs to go to the next line
and to update the variables.

Thanks to the scalable tree architecture of Allinea DDT, it is only a matter of milliseconds to step
the code.

Now, let's just run the code and see how the bugs that we fixed earlier appear at a larger scale.

Check that the breakpoints and tracepoints that you created earlier are
still present.

Press play to run the program.
Allinea DDT stops with an error message – indicating segmentation faults
in different places in the code.

As you see, the tracepoints, the Parallel Stack View, the variables... are just as readable
as they were previously at smaller scale. Allinea DDT gives you the information you
need in any circumstance!

© Allinea Software 2012 27 DDT Training 3.2

Summary

We have seen a number of features in DDT that can help you to fix the really common types of
problem that occur in everyday development.

This didn't cover everything that DDT can do for you, but it should give you the confidence to use
DDT and try other features as you become more familiar with it.

For example, DDT's process groups are a great way of controlling subsets of processes – they're
quick and easy to create and let you set breakpoints or step, say, with only a partial set of processes.

Another example is using the attaching feature to attach to a job that is already running.

The userguide gives a more comprehensive look at the features of DDT and you can get this to
appear in DDT by pressing F1, a PDF version is also available in the doc subdirectory of DDT's
installation.

If there are any questions you have, or problems with using DDT, please remember that
support@allinea.com exists to ensure your debugging is successful! We always like to hear from
you, as users like you help us to know what is important in our debugger.

© Allinea Software 2012 28 DDT Training 3.2

mailto:support@allinea.com

	DDT Training Day
	Reading Materials and Exercises
	October 2012
	DDT Training Course
	Objectives
	Session 0 – Getting Started
	Session 1: Straightforward Crashes
	Walkthrough
	Exercise
	Hints

	Walkthrough
	Exercise
	Hints

	Session 2: Memory Errors
	Session 2: Walkthrough
	Session 2: Exercise
	Hint

	Session 3: Deadlock in MPI
	Walkthrough
	Exercise
	Hints

	Session 4: Memory Leaks
	Walkthrough
	Exercise

	Session 5: GPU Debugging
	Walkthrough
	Exercise
	Hints

	Session 6: Incorrect Results – C Example
	Walkthrough
	Exercise

	Session 7: Incorrect Results - F90 Example
	Exercise
	Hint

	Exercise
	Hints

	Session 7: Large-scale debugging
	Walkthrough

	Allinea DDT stops with an error message – indicating segmentation faults in different places in the code.
	As you see, the tracepoints, the Parallel Stack View, the variables... are just as readable as they were previously at smaller scale. Allinea DDT gives you the information you need in any circumstance!
	Summary

